

WL LEGACY PROJECT CANDIDATE

Rare Earth Permanent Magnet

A Wright Laboratory Materials Directorate Development

Distribution Unlimited (ASC-97-2391)

RARE EARTH PERMANENT MAGNETS

- Used in every Air Force and DoD aircraft, missile, satellite, submarine, torpedo, etc., typically as an *enabling technology* providing significant new DoD mission capability
- Significantly better, lighter, smaller, cheaper, and easier to assemble into products

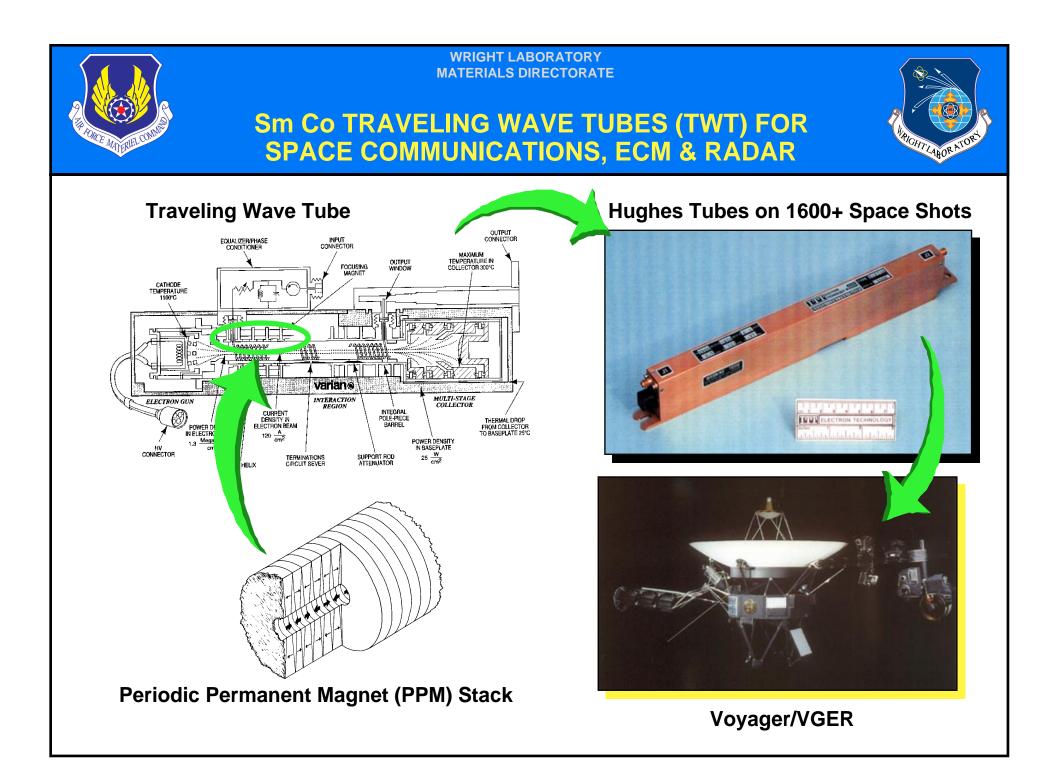
RARE EARTH PERMANENT MAGNET PRESENTATION OUTLINE

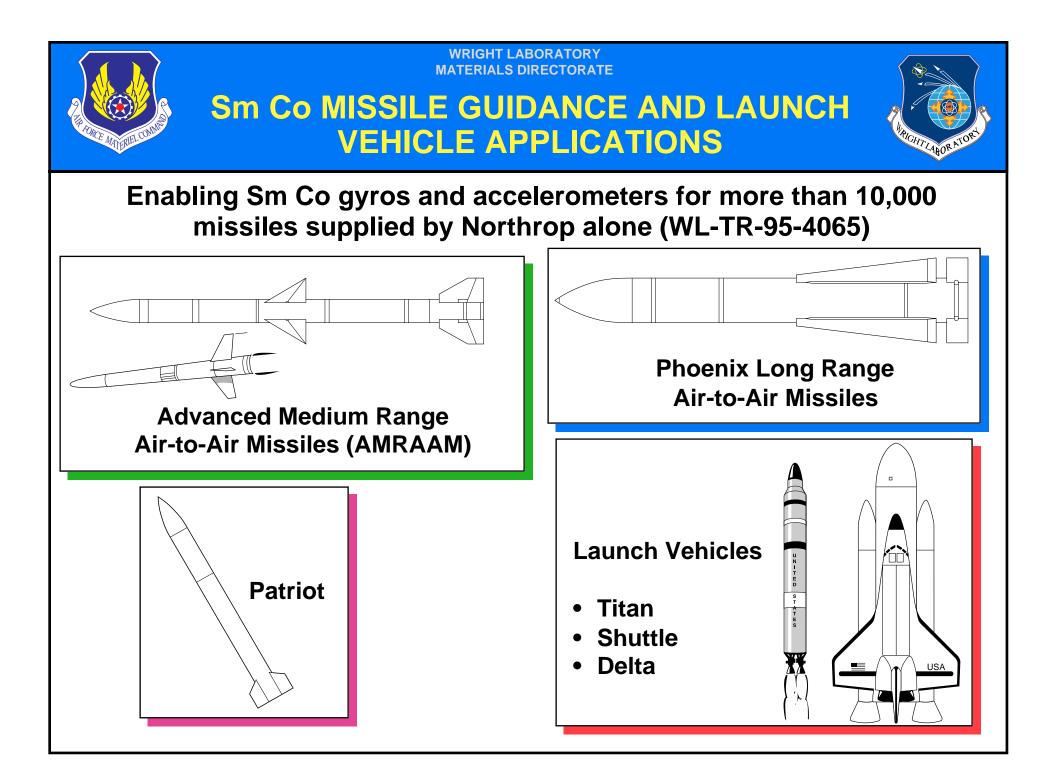
- Major Air Force and Commercial Applications
- History and Significance of the Inhouse Discovery
- Milestones
- Industry Testimonials
- Little Known Facts About Permanent Magnets
- Summary of Wright Laboratory Involvement

RARE EARTH PERMANENT MAGNET TECHNOLOGY TRANSITION STUDY

Study Methodology

- Data Collected by Two of the Industry Founders
 - Marlin Walmer, President and Founder of Electron Energy Corp., a Manufacturer of High End Magnet Materials Used in Numerous Weapon Systems
 - Professor Emeritus Alden E. Ray of the University of Dayton, Co-Discover With Karl Strnat of Sm₂CO₁₇
- Analysis of Questionnaire Responses Received From Nearly 40 Companies and Site Visit Information Documented in Their 500 Page Report WL-TR-95-4065




PRODUCTS BASED ON SAMARIUM COBALT MAGNETS

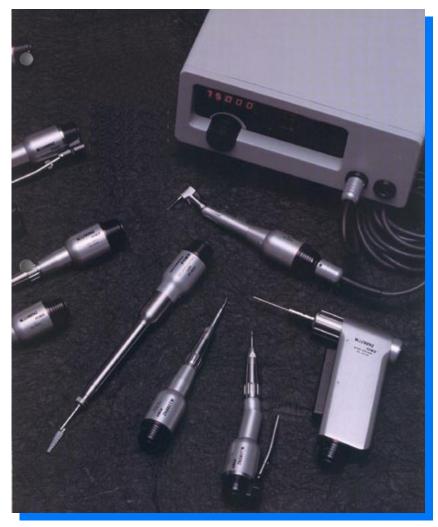
- Satellite Communication Traveling Wave Tubes (TWTs)
 - Over 2,300 units from Hughes alone have been launched into space on 1600 launches (microwave/radar tubes)
- Missile Accelerometers, Gyros, Inertial Reference Systems
 - In 10,000 missiles and launch vehicles from Northrop alone
- Aircraft TWTs for EW Environments And Tactical Radar
 - Over 43,000 MINI-TWTs from Varian alone for hostile EW
 - F-16 radar TWTs, APG-66, APG 68, F-18 radar TWT, APG-65
- Aircraft Fly-By-Wire and More Electric Aircraft (MEA)
 - Stealth Bomber and NC-141A Electric Starlifter
- Many Commercial Spinoffs, Examples
 - Largest is TV via stationary (HEO) satellites using TWTs
 - Dental and surgical power tools
 - Hundreds of US manufacturing jobs

Reference WL-TR-95-4065

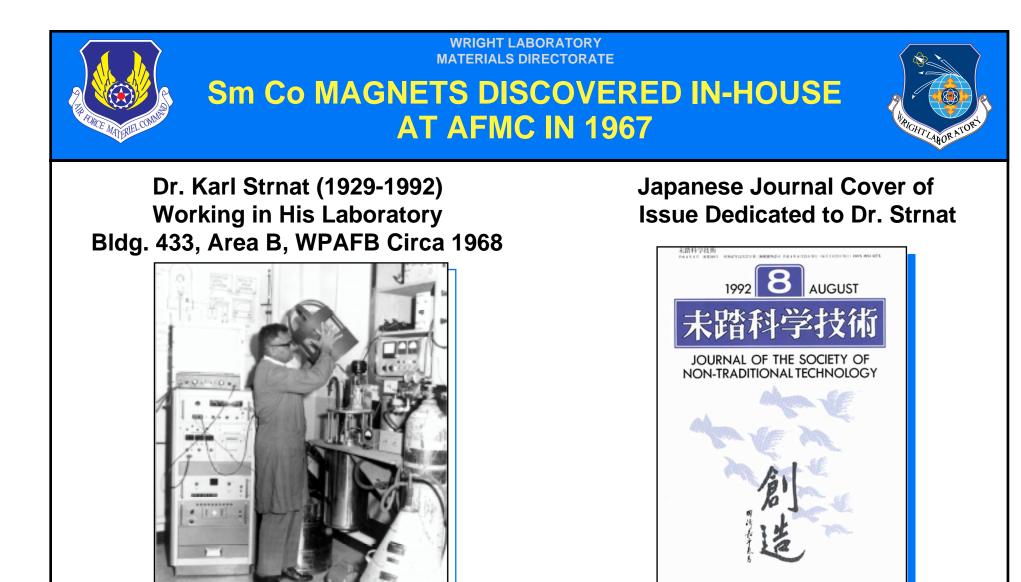
WRIGHT LABORATORY

Fly-by-Wire

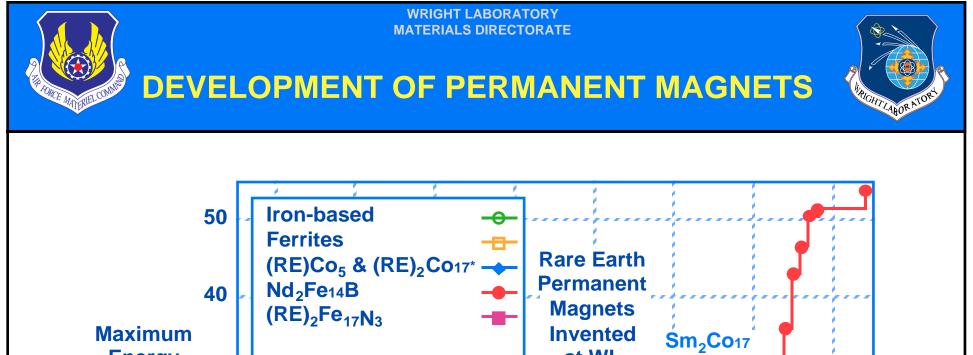
More Electric Aircraft (MEA)

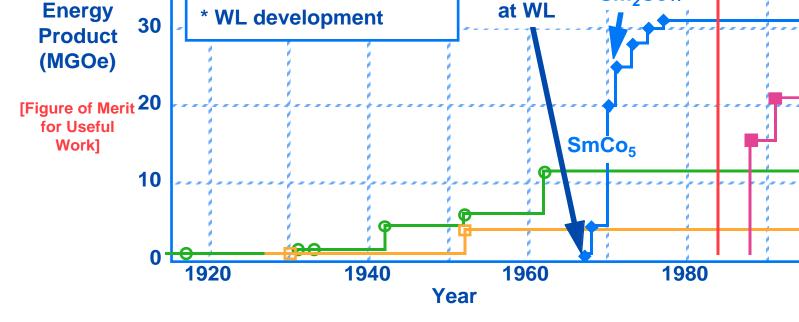


Sm Co permanent magnet generators are employed as flight critical power sources for Fly-by-Wire Sm Co based electromechanical aileron actuation demonstrated in NC-141A Electric Starlifter


Sundstrand Report WL-TR-95-4065

Sm Co MEDICAL APPLICATIONS


- Surgical and Dental Power Tools
 - Sm Co brushless DC motors provide high torque, high temperature stability, low mass and small size
 - Sm Co rotor magnets are the best solution for the design criteria. Arthrotek Medical Systems Report WL-TR-95-4065
- MRI Imagers Use RE Magnets
 - Third generation rare earth magnet, neodymium iron boron, used in tons per MRI instrument, a low temperature application. Nd Fe B discovery not a direct result of AF discovery but the search for it was motivated by the AF success



• The Father of Rare Earth Cobalt Magnets

 Symbols Translate to Explorers of Unknown Lands

社团法人 未踏科学技術協会

COMMERCIAL RARE EARTH MAGNETS

Туре	Attributes
SmCo ₅ *	High coercivity, large magnetization, large energy product, high cost (Co), useable to ≈300°C
Sm ₂ Co ₁₇ *	Higher magnetization, larger energy product (≈100% > SmCo ₅), high cost (Co), useable to ≈300°C
(Sm _x Gd _{1-x})2(Co) _{17*} (Gadolinium, a heavier rare earth)	Magnetic and thermal properties and cost similar to Sm ₂ Co ₁₇ but with increased property stability over temperature range of mission
Nd ₂ Fe ₁₄ B (operating temperature range not adequate for many AF uses)	Very large energy product, but only useable to ≈150°C, far below many Air Force requirements; many commercial spinoff applications

*Wright Laboratory development

RARE EARTH COBALT SUPERIORITY

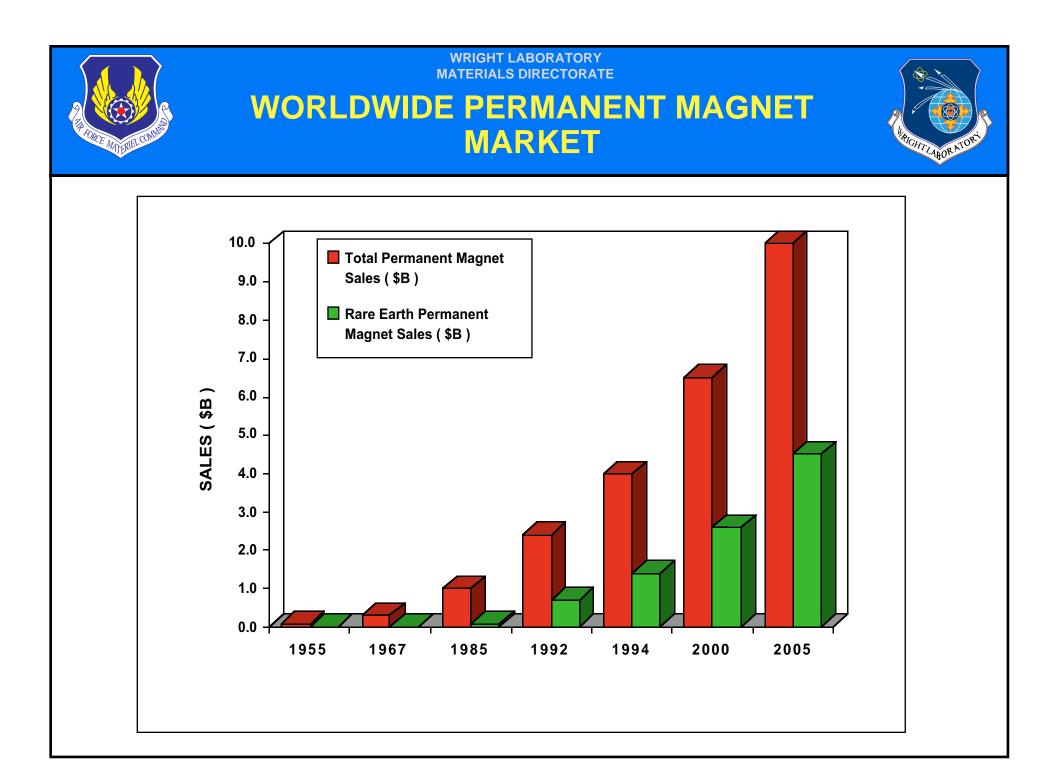
- Basically smaller, lighter, cheaper, better, easier
 - Ability to do useful work is 3X greater than Pt-Co (6x larger than Alnico) ⇒ smaller and lighter magnet
 - Significantly cheaper (no noble metals)
 - •10X Cheaper than Pt-Co
 - Better magnetic properties at high temperatures
 - Sm Co at 350°C equates to Pt-Co at room temperature
 - Only magnet choice for many DoD missions
 - Resistance to demagnetization is 2X larger
 - Easy to assemble into products
 - 20X to 50X that of Alnico

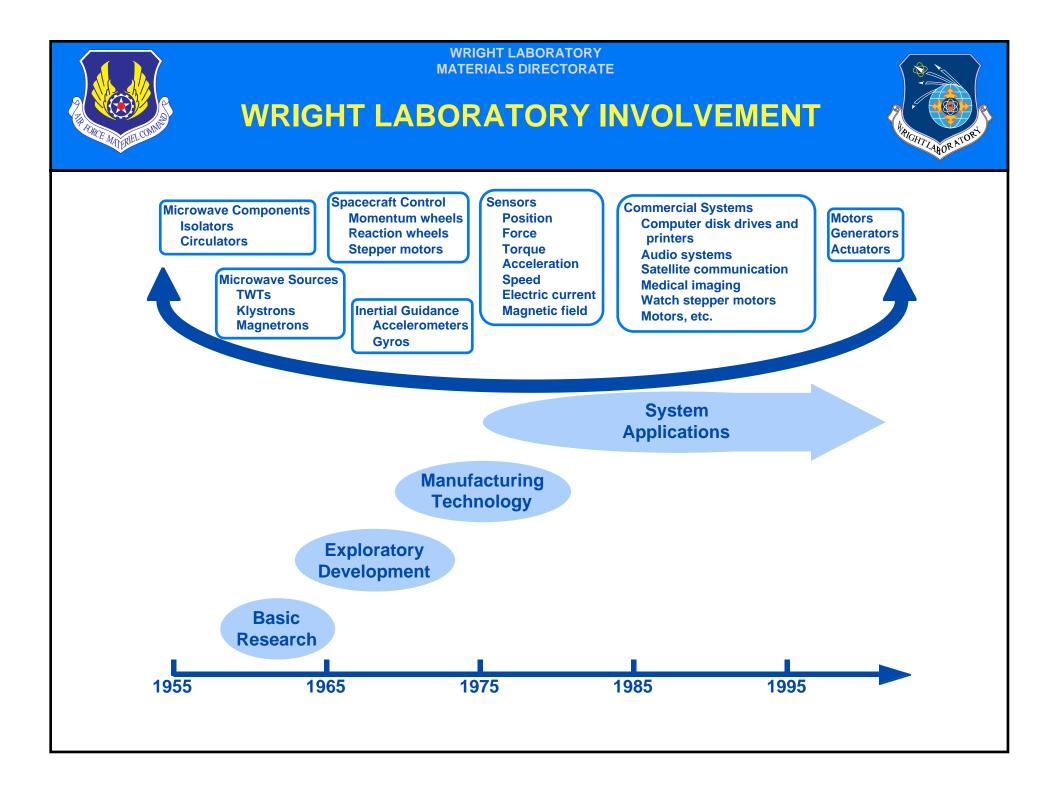
IMPORTANT MILESTONES IN WL RARE EARTH MAGNET DEVELOPMENT

Time Period	Milestone
Contributing Factors	
Early 1940's	High purity rare earth materials separated in <i>Manhattan Project</i>
Late 1950's	Atomic-Powered Aircraft project brings rare earth materials to AFML for study
AFML Magnetic Materials Effor	t
1961	AFML rare earth alloy research effort initiated by Dr. Karl J. Strnat to study rare earth transition metal intermetallics
1966	Strnat and Hoffer of AFML discover the hugh crystalline anisotropy in
	YCo ₅ in inhouse research effort and predict tremendous potential of rare earth magnets; paper and Tech Report are seminal works for research around the world
1967	Strnat, Hoffer, Olson and Ostertag of AFML demonstrate first viable rare earth magnet with SmCo ₅ ; patents and AFML's Cleary Award follow
1970	Commercially viable manufacture of rare earth magnets by liquid phase sintering developed under AFML contract
1971	First rare earth magnets in space in a Skylab TWT, now pervasive in all military and commercial space TWTs
1971	First application of rare earth magnets in navigation gyros, now pervasive in missile and rocket navigation
1972	First high power TWTs with revolutionary capability manufactured on ML contract, now pervasive in all military fire control and ECM systems
1972	Sm _{2C017} magnets developed on ML contract (≈100% higher performance and higher temperature capability and stability than SmCo₅)
1992	World market for rare earth permanent magnets exceeds \$1B

NOTABLE QUOTES ABOUT WL PERMANENT MAGNETS

Quote	Source
"The invention of the Sm-Co magnet by by Dr. Strnat and his associates at W-PAFB in the mid-1960's has truly played a major role in the miniaturization of the computer and the substantial improvement in electron tube devices throughout the world."	Mr. William G. Hart, Magnet Market Analyst, Bill Hart Enterprises
"Today an entire industry owes its state-of-the art to the invention of the rare earth magnetIt has made it possible for the U.S. military to have the best-performing radar, communication, and electronic countermeasures systems in the world today."	<i>Mr. Donald Gagne, Manager, Design Engineering, Teledyne Electronic Technologies</i>
"The invention of Sm-Co alloy magnet systems by Dr. Karl Strnat was both revolutionary and evolutionary. Prior to that event the permanent magnet industry had settled into a period of mediocre growth centered on Alnico and hard ferrite. Neither of these materials had magnetic characteristics that could satisfy the needs of the military and certain segments of the civilian market. At the present time no other permanent magnet material except Sm-Co is effective for highly sophisticated defense applications, and, based on a survey of reported R&D programs around the globe, none is on the horizon."	Mr. Port Wheeler, Magnet Market Analyst, Wheeler Associates
"The impact of Sm-Co in small rate integrating gyros goes beyond mere state-of-the- art performance. Sm-Co is one of several technologies, microelectronics and microprocessors being the others, which enabled a revolutionary change in navigation equipment."	<i>Mr. Gary E. Walker, Director Instrument Engineering, Nothrop Electronics Systems Division</i>
"In the high power coupled cavity arena, a number of current TWTs would not exist without Sm-Co magnets. Some examples are: The F-18, APG-65 radar TWT; the J- STARS TWT; the F-16, APG-66 and APG-68 radar TWTsIn the medium power helix TWT area, the major user of Sm-Co Magnets is the TWT in the AMRAAM missileThis tube could not be produced without the availability of Sm-Co magnets."	<i>Mr. Gordon Lange, Chief Engineer, Hughes Electron Dynamics Division</i>





SOME LITTLE-KNOWN FACTS ABOUT PERMANENT MAGNETS

Fact	Comment
Few people are aware of how many hidden permanent magnets provide forces that operate devices that we use every day in our homes, cars, offices, and factories	Items such as motors, computer drives and printers, watch motors, anti-lock brake system, audio speakers, many forms of sensors, and communication satellite TWTs are all dependent on permanent magnet technology
Total world market for permanent magnets is over \$4B annually, growing to >\$10B in 10 years, with rare earth permanent magnets now about 40% of total and increasing	As countries develop, use of items which require permanent magnets, particularly rare earth magnets, will increase
Rare earth permanent magets were invented in WL in 1966	The concept of rare earth permanent magnets was first <u>conceived and</u> <u>demonstrated</u> by WL researchers
Rare earth magnets remain the highest performance magnets for a given size	Many applications require large magnetic flux with minimal magnet size; small TWTs, portable computer drives and audio headsets were enabled by rare earth permanent magnets
Rare earth magnets SmCo ₅ and Sm ₂ Co ₁₇ - type magnets (WL developments) are the only permanent magnets useful at temperature >200°C	Temperature stability and performance at temperature are unique to SmCo ₅ and Sm ₂ Co ₁₇ -type magnets

