George P. Peterson

Recognized for...

ADVANCED COMPOSITE MATERIALS

Development and Deployment of

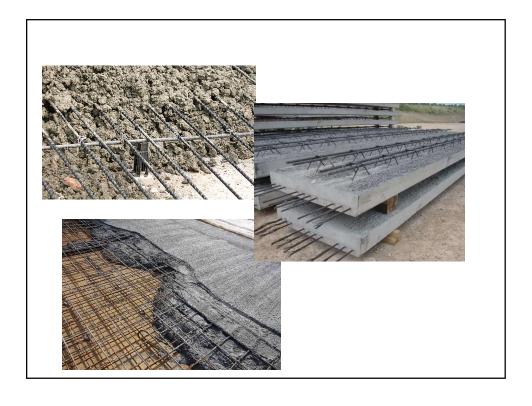
Advanced Composite Materials and

Manufacturing Technologies

Dr. Charles E. Browning Graduate Materials Engineering University of Dayton Dayton, OH

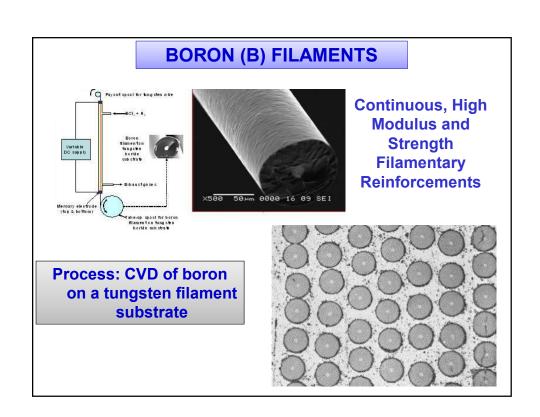
ADVANCED COMPOSITE MATERIALS

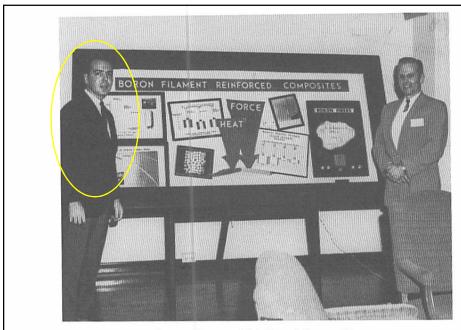
Outline


- Technical background
- Impacts on the materials landscape
- How it all came about...the role(s) of George Peterson

Background

<u>Composite Material</u> – material composed of at least two (2) distinctly different materials acting in concert


Reinforced Composite Material – a composite material consisting of reinforcing <u>fibers</u>, <u>whiskers</u>, and/or <u>particles</u> in a common <u>matrix</u> binder

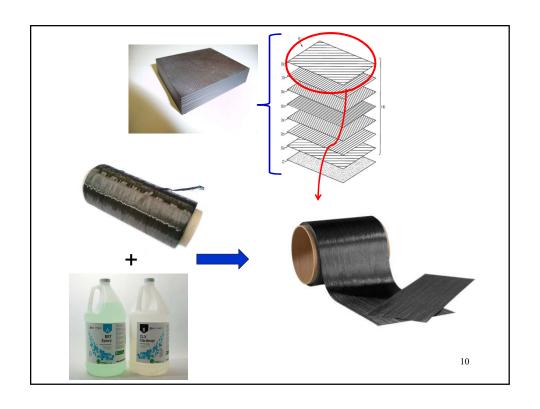

<u>Advanced Composite Material</u> – a reinforced composite material containing high performance (advanced) reinforcing fibers – Boron (B), Carbon (C) - in a suitable structural matrix resin

Advanced Composites... distinguishing features:

- Exceptional mechanical and physical properties
 - high moduli and strength
 - low density
 - high volume loading of fibers
- Anisotropy (properties are directionally dependent)
- Tailorability

Boron Filament Reinforced Composites

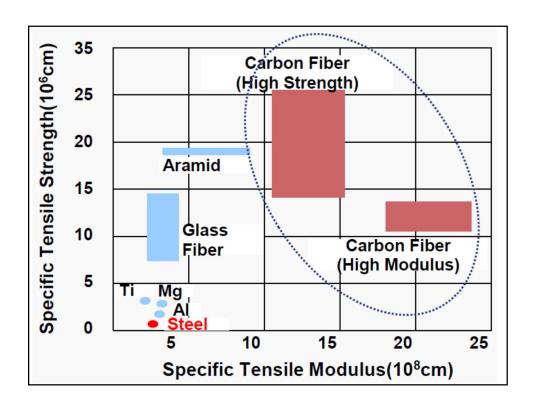
CARBON (C) FIBERS



Process: pyrolysis of a polymeric precursor to a carbonaceous/graphitic

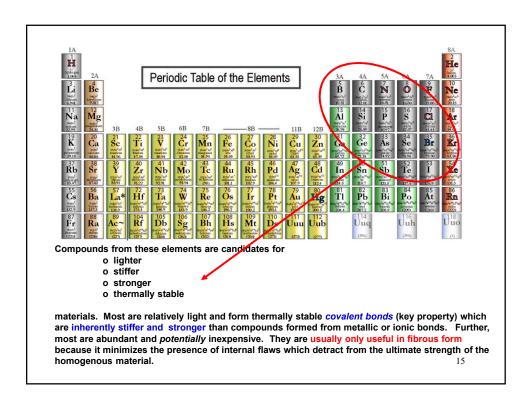
material

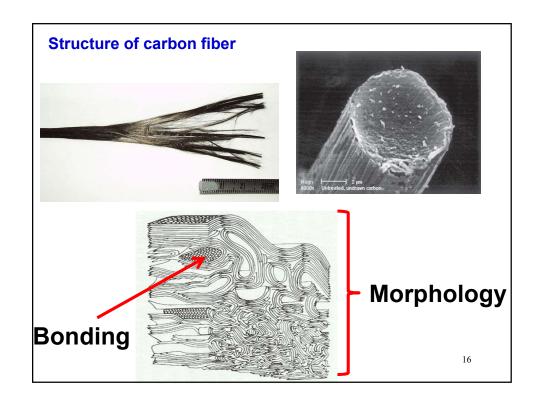
Continuous, High Modulus and Strength Fiber Reinforcements

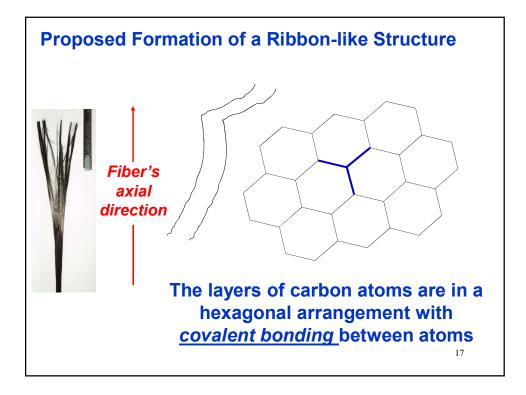


Why Composites?

- High Strength-to-Density
- High Stiffness-to-Density
- Formable to complex shapes
- Nonconductive/conductive
- Corrosion resistance
- Fatigue resistance
- Creep and stress rupture resistance
- Controlled (low) thermal expansion
- Lower cost


1


Major Advantage - Specific Properties Specific Property = property/density Higher Specific Strength Higher Specific Modulus Weight Savings More efficient structures Reduced energy costs Reduced materials costs

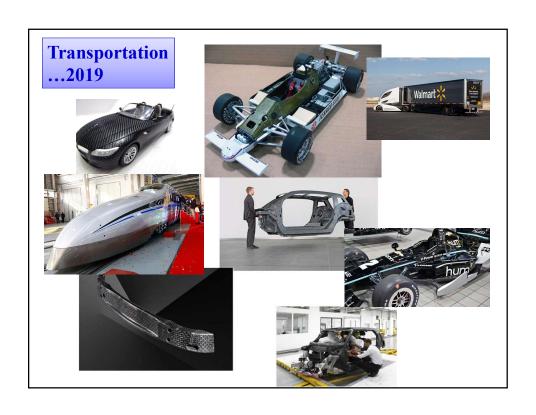


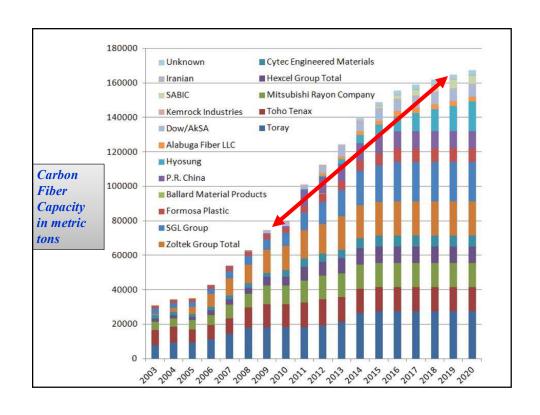
Two major factors driving materials properties:

- Bonding
- Morphology

ADVANCED COMPOSITE MATERIALS

Outline


- Technical background
- Impacts on the materials landscape
- How it all came about...the role(s) of George Peterson



ADVANCED COMPOSITE MATERIALS

- Technical background
- Impacts on the materials landscape
- How it all came about...the role(s) of George Peterson

27

Context: 1960s/1970s technology climate

- Very limited characterization tools
- No mechanical analysis tools for anisotropic laminated materials
- No nondestructive investigation tools such as ultrasonic inspection
- No standard test methods for composite materials
- · No text/reference books
- Computers in their infancy
 - No computer controls
 - No modeling
 - No internet!
 - No Google!
- Yes...no cell phones!

Context: 1960s/1970s revolutionary materials "insertion" climate

- · Early Performance values must be compelling
- · Resources are a must
- · Major risk taking required
 - Limited technology climate
 - Preliminary data may not be adequate to assess potential
 - Initial manufacturing may be "hands on"
 - Future processing methodologies may need to be invented
 - Maturity time unknown
 - Initial applications may be limited

Given this context, how did a new materials technology evolve?

The Answers...

Compelling properties
Champions
Vision
Resources
Risk takers
Creative leaders and engineers

"Game Changers"

"game changers"

... "events" which had a profound, long lasting impact; changed how these materials were used, analyzed, evaluated, processed....

Early Game Changing Events

- Project Forecast I
- Primer
- Data programs
- Advanced Comp Design Guide
- Fibers
- Fabrics
- Resins/matrices
- Tape
- AF Mantech programs....
- Early automation
 - Filament winding
 - Tape machines
- Tape placement machines
- · Producibility programs
- Machining methods...drilling, cutting....
- Initial Demo/Production Parts
 - F-14, F-15, F-16, B-1 (1.0)
 - RR fan blade
- Processing science
- Quality
 - NDI
 - Chemical QA

- The "problem" era
 - Moisture problem
 - Fiber release
 - Galvanic corrosion
 - Lightning strikes
- · Test methods/stds
- Repair methods
- Durability/damage tolerance
- Cure monitoring programs
- The "toughness" era
 - Themoplastics...toughened epoxies
 - Boeing spec, open-hole compression
 - Free edge
 - Mode I
 - Hydrodynamic ram
- · The Clinton years

Early Game Changing Events

- Project Forecast I
- Primer
- Data programs
- · Advanced Comp Design Guide
- Fibers
- Fabrics
- · Resins/matrices
- Tape
- · AF Mantech programs....
- Early automation
 - Filament winding
 - Tape machines
 - Tape placement machines
- Producibility programs
- Machining methods...drilling, cutting....
- Initial Demo/Production Parts
 - F-14, F-15, F-16, B-1 (1.0)
 - RR fan blade
- Processing science
- Quality
 - NDI
 - Chemical QA

- · The "problem" era
 - Moisture problem
 - Fiber release
 - Galvanic corrosion
 - Lightning strikes
- Test methods/stds
- Repair methods
- · Durability/damage tolerance
- Cure monitoring programs
- · The "toughness" era
 - Themoplastics...toughened epoxies
 - Boeing spec, open-hole compression
 - Free edge
 - Mode I
 - Hydrodynamic ram
 - The Clinton years

Key Elements of the Advanced Composites Program (1963)

- Long range plan
- Resources
- Organizational framework
 - Leadership at all levels
 - High performance teams
 - Creativity
 - Flexibility
 - Customer focus

Key Elements of the Advanced Composites Program (1963)

<u>Organizational framework – GPP's leadership roles</u>

- 1964 Advanced Filaments and Composites Division
 - Chief: GPP
- 1967 Advanced Composites Division
 - Chief: GPP
- 1971 Composites Recast... GPP leadership position
- 1972 Advanced Development Division
 - Chief: GPP
- 1972 Manufacturing Technology Division
 - Chief: GPP
- 1975 AFML
 - Director: GPP

Key Elements of the Advanced Composites Program

The organizational framework, leadership positions of GPP, and the "state of the technology" perfectly meshed.

Game Changing Events

Early Game Changing Events

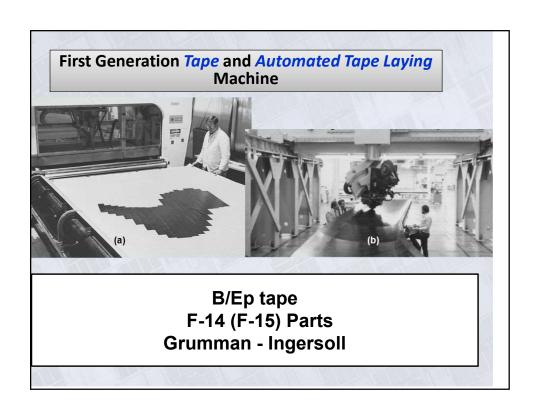
- Project Forecast I
- Primer
- Data programs
- Advanced Comp Design Guide
- Fibers
- Fabrics
- Resins/matrices
- Tape
- AF Mantech programs....
- Early automation
 - Filament winding
 - Tape machines
 - Tape placement machines
- Producibility programs
- Machining methods...drilling, cutting....
- Initial Demo/Production Parts
 - F-14, F-15, F-16, B-1 (1.0)
 - RR fan blade
- Processing science
- Quality
 - NDI
 - Chemical QA

- The "problem" era
 - Moisture problem
 - Fiber release
 - Galvanic corrosion
 - Lightning strikes
- Test methods/stds
- Repair methods
- Durability/damage tolerance
- Cure monitoring programs
- The "toughness" era
 - Themoplastics...toughened epoxies
 - Boeing spec, open-hole compression
 - Free edge
 - Mode I
- Hydrodynamic ram
- The Clinton years

George Peterson's Technology Legacy

Early Game Changing Events

- Project Forecast I
- Primer
- · Data programs
- · Advanced Comp Design Guide
- Fibers
- Fabrics
- Resins/matrices
- Tape
 - AF Mantech programs....
 - **Early automation**
 - Filament winding
 - Tape machines
 - Tape placement machines
 - Producibility programs
- Machining methods...drilling, cutting....
- Initial Demo/Production Parts
 - F-14, F-15, F-16, B-1 (1.0)
 - RR fan blade
- Processing science
- Quality
 - NDI
 - Chemical QA


- The "problem" era
 - Moisture problem
 - Fiber release
 - Galvanic corrosion
 - Lightning strikes
- Test methods/stds
- Repair methods
- Durability/damage tolerance
- · Cure monitoring programs
- · The "toughness" era
 - Themoplastics...toughened epoxies
 - Boeing spec, open-hole compression
 - Free edge
 - Mode I
 - Hydrodynamic ram
 - The Clinton years

AF Mantech Programs....

....The Rise of the Machines....

...Brought automation to advanced composites manufacturing

George P. Peterson

- Visionary leader
- Tireless advocate
- The consummate champion

...for a revolutionary materials technology – Advanced Composite Materials